Prof. Assume
$$e, e' \in G$$
 such that
 $e * a = a = e = g$ $a = a = a = e' = g$ $\forall a = G$
 $\Rightarrow e = e * e' = e'$
Lot $a \in G$ and $b, c \in G$ such that
 $a * b = b * a = e$ $a = d$ $a = c = c * a = e$. Then
 $a * b = e \Rightarrow c * (a = b) = c * e$ Accordingly
 $\Rightarrow (c * a) * b = c$ $f = a = b$
 $e * b = c$ $f = a = b$
 $e * b = c$ $f = a = b$
 $e * b = c$ $f = a = b$
Notation Given $a \in G$, $a^{-1} = invect + a$, and given $v \in Z$
 $a^{-1} = invect + a$, and given $v \in Z$
 $a^{-1} = invect + a$, and given $v \in Z$
 $a^{-1} = invect + a$, and given $v \in Z$
 $a^{-1} = invect + a$, $a = b$
 $Poot$ $a = c = b + c = a = b$
 $Poot$ $a = c = b + c = a = b$
 $Poot$ $a = c = b + c = a = b$
 $Poot$ $a = c = b + c = a = b$
 $Poot$ $a = c = b + c = a = b$
 $Poot$ $a = c = b + c = a = b$
 $Poot$ $a = c = b + c = a = b$
 $Poot$ $a = c = b + c = a = b$
 $Poot$ $a = c = b + c = a = b$
 $Other indices = a = b$ \Box
 $Diffinition$ Let $(G_{1}, +), (H, c)$ be two groups.
 A homomorphism from G to H is a map
 $A = G = b$ foot $A = a = b$
 A homomorphism from G to H is a map
 $A = G = a = b$ \Box

$$\frac{Examples }{V} V, W votor spaces, $f : V \rightarrow W$ linear

$$\Rightarrow f homeomerphism from $(V, +)$ to $(W, +)$

$$x \geq 2 \text{ for } Z = grap when Abdian groups
Remark : The composition of two homeomorphisms is again a
homeomorphism. The identity maps is a homeomorphism
Proposition Let $(G_{1}x), (f, o)$ be graps with identities e_{x}, e_{H} .
 $If f : G \rightarrow H$ is a homeomorphism then
 $\cdot f(e_{q}) = e_{H}$
 $\cdot f(e_{q}) = e_{H}$
 $\cdot f(e_{q}) = e_{H}$
 $Let = f(e_{q}) = f(e_{x}) = f(e_{q}) = f(e_{q}) \circ f(e_{q})$
 $e_{H} = f(e_{q}) = f(e_{x}) = f(e_{x} e_{q}) = f(e_{q}) \circ f(e_{q})$
 $e_{H} = f(e_{q}) = f(e_{X} e_{X}^{-1}) = f(e_{X}) \circ f(e_{X}^{-1})$
 $Dt finishon$
 $f : G \rightarrow H$ an isomerphism $\Rightarrow f$ a homeomorphism and
 $G : H$ isomerphise $\Rightarrow J f : G \rightarrow H$ an isomerphism
 $G : H$ isomerphise $\Rightarrow J f : G \rightarrow H$ an isomerphism
 $G : H$
 $Intrustrom : G \cong H \iff Same essential group with$
 $Fundamental Problem : (lassity all groups up to isomerphism.
Analogous h : All their dimensional real vector spaces admit
 $a linear isomerphism to R^{n} $(n = dim(V))$$$$$$$$$